Statistics, data mining, and machine learning in astronomy : a practical Python guide for the analysis of survey data /

As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to...

Ful tanımlama

Detaylı Bibliyografya
Yazar: Ivezić, Željko, yazar
Diğer Yazarlar: Connolly, Andrew (yazar), Vanderplas, Jacob T. (yazar), Gray, Alexander, (yazar)
Materyal Türü: Kitap
Dil:English
Baskı/Yayın Bilgisi: Princeton, N.J. : Princeton University Press, 2014
Seri Bilgileri:Princeton series in modern observational astronomy
Konular:
LEADER 08087nam a2200493 i 4500
003 TRMEMSKU
005 20240311103044.0
008 140125t20142014njua ob 001 0 eng d
020 |a 9781400848911 
020 |a 1400848911 
020 |a 0691151687 
020 |a 9780691151687 
020 |a 9781306373845 
020 |a 1306373840 
040 |b tur  |e rda  |e pn  |c TR7VH  |a TRMEMSKU 
041 0 |a eng 
049 |a TR7VH 
050 0 0 |a QA76.9.D343  |b I384 2014 
100 1 |a Ivezić, Željko,  |9 276777  |d yazar 
245 1 0 |a Statistics, data mining, and machine learning in astronomy :  |b a practical Python guide for the analysis of survey data /  |c Željko Ivezić, Andrew J. Connolly, Jacob T. VanderPlas, and Alexander Gray 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c 2014 
264 4 |c ©2014 
300 |a X, 540 sayfa :  |b resim ;  |c 24 cm. 
336 |a TX  |2 rdacontent 
337 |a UMD  |2 rdamedia 
338 |a VLM  |2 rdacarrier 
490 1 |a Princeton series in modern observational astronomy 
504 |a Bibliyografyaları ve dizini var. 
505 0 |a I. Introduction -- 1. About the Book and Supporting Material -- 1.1. What do Data Mining, Machine Learning, and Knowledge Discovery mean? -- 1.2. What is this book about? -- 1.3. An incomplete survey of the relevant literature -- 1.4. Introduction to the Python Language and the Git Code Management Tool -- 1.5. Description of surveys and data sets used in examples -- 1.6. Plotting and visualizing the data in this book -- 1.7. How to efficiently use this book -- References -- 2. Fast Computation on Massive Data Sets -- 2.1. Data types and Data Management systems -- 2.2. Analysis of algorithmic efficiency -- 2.3. Seven types of computational Problem[s] -- 2.4. Seven strategies for speeding things up -- 2.5. Case studies: Speedup strategies in practice -- References 
505 8 |a II. Statistical Frameworks and Exploratory Data Analysis -- 3. Probability and Statistical Distributions -- 3.1. Brief overview of probability and random variables -- 3.2. Descriptive statistics -- 3.3. Common Univariate Distribution Functions -- 3.4. The Central Limit Theorem -- 3.5. Bivariate and Multivariate Distribution Functions -- 3.6. Correlation coefficients -- 3.7. Random number generation for arbitrary distributions -- References -- 4. Classical Statistical Inference -- 4.1. Classical vs. Bayesian Statistical Inference -- 4.2. Maximum Likelihood Estimation (MLE) -- 4.3. The goodness of Fit and Model Selection -- 4.4. ML Applied to Gaussian Mixtures: The Expectation Maximization Algorithm -- 4.5. Confidence estimates: the bootstrap and the jackknife -- 4.6. Hypothesis testing -- 4.7. Comparison of distributions -- 4.8. Nonparametric modeling and histograms -- 4.9. Selection effects and Luminosity Function Estimation -- 4.10. Summary -- References -- 5 Bayesian Statistical Inference -- 5.1. Introduction to the Bayesian method -- 5.2. Bayesian priors -- 5.3. Bayesian parameter uncertainty quantification -- 5.4. Bayesian model selection -- 5.5. Nonuniform priors: Eddington, Malmquist, and Lutz-Kelker biases -- 5.6. Simple examples of Bayesian analysis: Parameter estimation -- 5.7. Simple examples of Bayesian analysis: Model selection -- 5.8. Numerical methods for complex problems (MCMC) -- 5.9. Summary of pros and cons for classical and Bayesian methods -- References 
505 8 |a III. Data Mining and Machine Learning -- 6 Searching for Structure in Point Data -- 6.1. Nonparametric density estimation -- 6.2. Nearest-neighbor density estimation -- 6.3. Parametric density estimation -- 6.4. Finding clusters in data -- 6.5. Correlation functions -- 6.6. Which density estimation and clustering algorithms should I use? -- References -- 7 Dimensionality and its reduction -- 7.1. The curse of dimensionality -- 7.2. The data sets used in this chapter -- 7.3. Principal component analysis -- 7.4. Nonnegative matrix factorization -- 7.5. Manifold learning -- 7.6. Independent component analysis and projection pursuit -- 7.7. Which dimensionality reduction technique should I use? -- References -- 8 Regression and model fitting -- 8.1. Formulation of the regression problem -- 8.2. Regression for linear models -- 8.3. Regularization and penalizing the likelihood -- 8.4. Principal component regression -- 8.5. Kernel regression -- 8.6. Locally linear regression -- 8.7. Nonlinear regression -- 8.8. Uncertainties in the data -- 8.9. Regression that is robust to outliers -- 8.10. Gaussian process regression -- 8.11. Overfitting, underfitting, and cross-validation -- 8.12. Which regression method should I use? -- References 
505 8 |a III. Data Mining and Machine Learning (continued) -- 9 Classification -- 9.1. Data sets used in this chapter -- 9.2. Assigning categories: Classification -- 9.3. Generative classification -- 9.4. K-nearest-neighbor classifier -- 9.5. Discriminative classification -- 9.6. Support vector machines -- 9.7. Decision trees -- 9.8. Evaluating classifiers: ROC Curves -- 9.9. Which classifier should I use? -- References -- 10 Time Series Analysis -- 10.1. Main concepts for Time Series Analysis -- 10.2. Modeling toolkit for Time Series Analysis -- 10.3. Analysis of Periodic Time Series -- 10.4. Temporally localized signals -- 10.5. Analysis of Stochastic Processes -- 10.6. Which method should I use for Time Series Analysis? -- References 
505 8 |a IV. Appendices -- A An Introduction to Scientific Computing with Python -- A.1. A brief history of Python -- A.2. The ScyPy universe -- A.3. Getting started with Python -- A.4. IPython: The basics of interactive computing -- A.5. Introduction to NumPy -- A.6. Visualization with Matplotlib -- A.7. Overview of useful NumPy/SciPy modules -- A.8. Efficient coding with Python and NumPy -- A.9. Wrapping existing code in Python -- A.10. Other resources -- B AstroML: Machine Learning for Astronomy -- B.1. Introduction -- B.2. Dependencies -- B.3. Tools included in AstroML v0.1 -- C Astronomical Flux Measurements and Magnitudes -- C.1. The definition of the specific flux -- C.2. Wavelength window function for astronomical measurements -- C.3. The astronomical magnitude systems -- D SQL Query for Downloading SDSS Data -- E Approximating the Fourier Transform with the FFT -- References 
520 |a As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indespensable reference for researchers 
520 8 |a More specifically, "this book is mostly about how to estimate the empirical pdf [probability density function] f(x) from data (including multidimensional cases), how to statistically describe the resulting estimate and its uncertainty, how to compare it to models specified via h(x) (including estimates of model parameters that describe h(x)), and how to use this knowledge to interpret additional and/or new measurements (including best-fit model reassessment and classification)."--Print version, Page 8 
650 0 |a Statistical astronomy  |9 276778 
650 0 |a Astronomy  |x Data processing  |9 276779 
650 0 |9 26920  |a Python (Computer program language) 
700 1 |a Connolly, Andrew  |q (Andrew J.),  |e yazar  |9 276780 
700 1 |a Vanderplas, Jacob T.   |e yazar  |9 276781 
700 1 |a Gray, Alexander,   |q (Alexander G.),  |e yazar  |9 276783 
942 |2 lcc  |c KT 
999 |c 74119  |d 74119 
952 |0 0  |1 0  |2 lcc  |4 0  |6 QA00769 D343 I384 02014  |7 1  |8 NFIC  |9 103115  |a MK  |b MK  |c FEF  |d 2018-06-27  |e B  |i 255.07.02.01.06-  |o QA76.9.D343 I384 2014  |p 0116360  |r 2018-06-27  |t k.1  |w 2018-06-27  |y KT